$$f_X(x;\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}\, e^{-\frac{(\operatorname{logit}(x) - \mu)^2}{2\sigma^2}} \frac{1}{x (1-x)}, \quad x \in (0, 1), \quad \sigma^2 > 0, \quad \mu \in \mathbb{R} $$ # Distributions |
$$f_X(x;\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}\, e^{-\frac{(\operatorname{logit}(x) - \mu)^2}{2\sigma^2}} \frac{1}{x (1-x)}, \quad x \in (0, 1), \quad \sigma^2 > 0, \quad \mu \in \mathbb{R} $$ # Distributions |