$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{t^2}{\nu} \right)^{-\frac{\nu+1}{2}}, \quad s.t. \quad \nu > 0, \quad x \in (-\infty, +\infty)$$ # Distributions |
$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})} {\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1+\frac{t^2}{\nu} \right)^{-\frac{\nu+1}{2}}, \quad s.t. \quad \nu > 0, \quad x \in (-\infty, +\infty)$$ # Distributions |