$$f(x; \mu,s) = \frac{e^{-\frac{x-\mu}{s}}} {s\left(1+e^{-\frac{x-\mu}{s}}\right)^2} =\frac{1}{4s} \operatorname{sech}^2\!\left(\frac{x-\mu}{2s}\right), \quad s.t. \quad \mu \in \mathbb{R}, \quad s > 0, \quad x \in (-\infty, +\infty)$$ # Distributions |