$$f(x) = \frac{2}{\omega}\phi\left(\frac{x-\xi}{\omega}\right)\Phi\left(\alpha \left(\frac{x-\xi}{\omega}\right)\right). \,\quad s.t. \quad \alpha, \omega, \xi \in \mathbb{R}, \quad x \in (-\infty; +\infty)\!$$ # Distributions |
$$f(x) = \frac{2}{\omega}\phi\left(\frac{x-\xi}{\omega}\right)\Phi\left(\alpha \left(\frac{x-\xi}{\omega}\right)\right). \,\quad s.t. \quad \alpha, \omega, \xi \in \mathbb{R}, \quad x \in (-\infty; +\infty)\!$$ # Distributions |
View in timezone: UTC+00, UTC+8, UTC+9, Lithuanian, U.K.. | Use this ⇪ button. |